skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Honomichl, S B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Refractory black carbon (rBC) is a primary aerosol species, produced through incomplete combustion, that absorbs sunlight and contributes to positive radiative forcing. The overall climate effect of rBC depends on its spatial distribution and atmospheric lifetime, both of which are impacted by the efficiency with which rBC is transported or removed by convective systems. These processes are poorly constrained by observations. It is especially interesting to investigate rBC transport efficiency through the Asian Summer Monsoon (ASM) since this meteorological pattern delivers vast quantities of boundary layer air from Asia, where rBC emissions are high to the upper troposphere/lower stratosphere (UT/LS) where the lifetime of rBC is expected to be long. Here, we present in situ observations of rBC made during the Asian Summer Monsoon Chemistry and Climate Impact Project of summer, 2022. We use observed relationships between rBC and CO in ASM outflow to show that rBC is removed nearly completely (>98%) from uplifted air and that rBC concentrations in ASM outflow are statistically indistinguishable from the UT/LS background. We compare observed rBC and CO concentrations to those expected based on two chemical transport models and find that the models reproduce CO to within a factor of 2 at all altitudes whereas rBC is overpredicted by a factor of 20–100 at altitudes associated with ASM outflow. We find that the rBC particles in recently convected air have thinner coatings than those found in the UTLS background, suggesting transport of a small number of rBC particles that are negligible for concentration. 
    more » « less
    Free, publicly-accessible full text available February 16, 2026
  2. Abstract This study characterizes the representation of convective transport by a Lagrangian trajectory model driven by kinematic (pressure tendencyω) vertical velocity. Four (re)analysis wind products are used in backward trajectory calculations with the TRAJ3D model, and their representations of convective transport are analyzed. Two observation‐based diagnostics are used for the evaluation: a database of observed convective cloud tops derived from satellite measurements and a set of transit time distributions (TTDs) derived from an airborne campaign during January–February 2014 in a domain over the Tropical Western Pacific (TWP). The analysis is designed to derive trajectory‐based TTDs that can be directly evaluated using the observation‐based TTDs. The results indicate a broad consistency between two independent TTD derivations characterizing vertical transport over the TWP, with a significant portion of convective transport processes represented in trajectory experiments driven by the selected (re)analysis wind products. The convective and boundary layer source regions of upper tropospheric air parcels are shown to be consistent with the climatological flow regime within the TWP. Furthermore, contributions of convection are identified in theωfields of the (re)analysis wind data sets, as indicated by the spatiotemporal correlation of enhanced vertical velocity and observed convection. These results demonstrate the successful application of two observation‐based diagnostics and quantify the ability for kinematic trajectory models to represent convective transport processes. 
    more » « less